Las condiciones de equilibrio son las leyes que rigen la estática. La estática es la ciencia que estudia las fuerzas que se aplican a un cuerpo para describir un sistema en equilibrio. Diremos que un sistema está en equilibrio cuando los cuerpos que lo forman están en reposo, es decir, sin movimiento. Las fuerzas que se aplican sobre un cuerpo pueden ser de tres formas:
-Fuerzas angulares: Dos fuerzas se dice que son angulares, cuando actúan sobre un mismo punto formando un ángulo.
Fuerzas colineales: Dos fuerzas son colineales cuando la recta de acción es la misma, aunque las fuerzas pueden estar en la misma dirección o en direcciones opuestas.
-Fuerzas paralelas: Dos fuerzas son paralelas cuando sus direcciones son paralelas, es decir, las rectas de acción son paralelas, pudiendo también aplicarse en la misma dirección o en sentido contrario.
Primera condición de equilibrio:Diremos que un cuerpo se encuentra en equilibrio de traslación cuando la fuerza resultante de todas las fuerzas que actúan sobre él es nula: ∑ F = 0. Desde el punto de vista matemático, en el caso de fuerzas coplanarias, se tiene que cumplir que la suma aritmética de las fuerzas o de sus componentes que están el la dirección positiva del eje X sea igual a las componentes de las que están en la dirección negativa. De forma análoga, la suma aritmética de las componentes que están en la dirección positiva del eje Y tiene que ser igual a las componentes que se encuentran en la dirección negativa:
Segunda condición de equilibrio: Por otro lado, diremos que un cuerpo está en equilibrio de rotación cuando la suma de todas las fuerzas que se ejercen en él respecto a cualquier punto es nula. O dicho de otro modo, cuando la suma de los momentos de torsión es cero.
Aqui ponemos observar un video de condiciones de equilibrio :
Un vector tiene tres características esenciales: módulo, dirección y sentido. Para que dos vectores sean considerados iguales, deben tener igual módulo, igual dirección e igual sentido. Los vectores se representan goemétricamente con flechas y se le asigna por lo general una letra que en su parte superior lleva una pequeña flecha de izquierda a derecha como se muestra en la figura.
Módulo: está representado por el tamaño del vector, y hace referencia a la intensidad de la magnitud ( número). Se denota con la letra solamente A o |A|
Vectores de igual módulo. Todos podrían representar, por ejemplo, una velocidad de 15 km/h, pero en distintas direcciones, por lo tanto todos tendrían distinta velocidad.
Vectores de distinto módulo. Se espera que el vector de menor tamaño represente por ejemplo una velocidad menor que la de los demás.
Vectores de distinto módulo: Así, los vectores de la figura podrían representar velocidades de 20 km/h, 5 km/h y 15 km/h, respectivamente.
Dirección: corresponde a la inclinación de la recta, y representa al ángulo entre ella y un eje horizontal imaginario ( ver figura 2) . También se pueden utilizar los ejes de coordenadas cartesianas (x, y y z) como también los puntos cardinales para la dirección.
Vectores de distinto módulo: Dos vectores tienen la misma dirección cuando la inclinación de la recta que los representa es la misma, es decir, cuando son paralelos.
Vectores de igual dirección: Sin importar hacia dónde apuntan o cuál es su tamaño, los vectores de la figura son paralelos, por lo que tienen la misma dirección.
Sentido: está indicado por la punta de la flecha. (signo positivo que por lo general no se coloca, o un signo negativo). No corresponde comparar el sentido de dos vectores que no tienen la misma dirección, de modo que se habla solamente de vectores con el mismo sentido o con sentido opuesto.
Aqui pueden observar un video de vectores y ejercicios resueltos.
La conversión de unidades es la transformación de una cantidad, expresada en un cierta unidad de medida, en otra equivalente, que puede ser del mismo sistema de unidades o no.
Este proceso suele realizarse con el uso de los factores de conversión y las tablas de conversión.
Frecuentemente basta multiplicar por una fracción (factor de conversión) y el resultado es otra medida equivalente, en la que han cambiado las unidades. Cuando el cambio de unidades implica la transformación de varias unidades se pueden utilizar varios factores de conversión uno tras otro, de forma que el resultado final será la medida equivalente en las unidades que buscamos, por ejemplo si queremos pasar 8 metros a yardas, lo único que tenemos que hacer es multiplicar 8 x (0.914)=7.312 yardas.
Alguna equivalencia
1 m = 100 cm
1 m = 1000 mm
1 cm = 10 mm
1 km = 1000 m
1 m = 3.28 pies
1 m = 0.914 yardas
1 pie = 30.48 cm
1 pie = 12 pulgadas
1 pulgada = 2.54 cm
1 milla = 1.609 km
1 libra = 454 gramos
1 kg = 2.2 libras
1 litro = 1000 Cm3
1 hora = 60 minutos
1 hora = 3600 segundos
Factor de Conversion
Un factor de conversión es una operación matemática, para hacer cambios de unidades de la misma magnitud, o para calcular la equivalencia entre los múltiplos y submúltiplos de una determinada unidad de medida.
Dicho con palabras más sencillas, un factor de conversión es "una cuenta" que permite expresar una medida de difentes formas. Ejemplos frecuentes de utilización de los factores de conversión son:
Unidad de medida es una cantidad estandarizada de una determinada magnitud física, definida y adoptada por convención o por ley. Cualquier valor de una cantidad física puede expresarse como un múltiplo de la unidad de medida.
Una unidad de medida toma su valor a partir de un patrón o de una composición de otras unidades definidas previamente. Las primeras unidades se conocen como unidades básicas o de base (fundamentales), mientras que las segundas se llaman unidades derivadas.
Estas son las unidades de medida
Estas son algunas definiciones de los patrones:
Metro: Un metro es la distancia que recorre la luz en el vacío durante un intervalo de 1/299 792 458 = 3,333 x 10-9 segundos
Kilogramo: Se define como la masa que tiene el prototipo internacional, compuesto de una aleación de platino eiridio.
Este es un problema para calcular la masa:
Segundo: Un segundo es la duración de 9 192 631 770 oscilaciones de la radiación emitida en la transición entre los dos niveles hiperfinos del estado fundamental del isótopo 133 del átomo de cesio (133Cs), a una temperatura de 0 K.
Mol: Se define como un mol a la cantidad de esa sustancia que contiene tantas entidades elementales del tipo considerado, como átomos hay en 12 gramos de carbono-12. Esta definición no aclara a qué se refiere cantidad de sustancia y su interpretación es motivo de debates.
El movimiento circular uniformemente acelerado (MCUA) se presenta cuando una partícula o cuerpo sólido describe una trayectoria circular aumentando o disminuyendo la velocidad de forma constante en cada unidad de tiempo. Es decir, la partícula se mueve con aceleración constante.
En el dibujo se observa un ejemplo en donde la velocidad aumenta lineal mente en el tiempo. Suponiendo que el tiempo en llegar del punto P1 a P2 sea una unidad de tiempo, la partícula viaja con una aceleración tangencial uniforme v, incrementándose esa cantidad en cada unidad de tiempo.
EJEMPLO DE PROBLEMA DE MCUA
1) Una rueda de 50cm de diámetro tarda 10 segundos en adquirir una velocidad constante de
360rpm. a) Calcula la aceleración angular del movimiento. b) Cuando la rueda llega a la velocidad
anterior, ¿cuál es la velocidad lineal de un punto de la periferia? c) Calcula la aceleración centrípeta
que posee a los 5 segundos la rueda del problema.
Ordenamos los datos:
Radio = 0,25m
ω0 = 0 rad/s
ωf = 360rpm = 120π
rad/s
t = 10 s
a) Para hallar la aceleración angular, usaremos la fórmula de la velocidad angular del MCUA:
ωf = ω0 + α·t
120π = α·10
α = 12π rad/s2
b) Cualquier magnitud lineal puede calcularse a partir de su correspondiente angular
multiplicándola por el radio, por lo que
v = ω·R
v = 120π · 0,25 = 94,25 m/s
c) La aceleración centrípeta (o normal) es igual a la velocidad lineal al cuadrado dividida entre el
radio. Para sacar la velocidad lineal a los 5 segundos, tenemos que hallar la velocidad angular a los
5 segundos, usando la misma fórmula que en el apartado
Aceleración angular como los cambios que experimenta la velocidad en las unidades de tiempo. Hacemos referencia a ella con la letra griega alfa α. Igual que la velocidad angular, la aceleración es de una corriente vectorial.
Se define aceleración angular como el canje que sufre la velocidad en las unidades de tiempo. Se la denomina como alfa α. Así como la velocidad angular, la aceleración angular presenta carácter vectorial.
La expresamos en s -2 que representa los radianes por segundo al cuadrado y esto es porque el radián es a dimensional. Por ende la aceleración angular mantiene el eje de rotación que se mantiene en una dirección constante en el espacio.
Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton, son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos. Revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo.
LA PRIMERA LEY DE NEWTON
La primera ley de Newton, conocida también como Ley de inercia, nos dice que si sobre un cuerpo no actúa ningún otro, este permanecerá indefinidamente moviéndose en línea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero).
Como sabemos, el movimiento es relativo, es decir, depende de cuál sea el observador que describa el movimiento.
"Así, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento".
La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante. Esta ley postula, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuyo resultante no sea nulo sobre él.
1ra Ley de Newton: Ley de la Inercia
SEGUNDA LEY DE NEWTON
La segunda ley del movimiento de Newton dice que
"El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime".
La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo.
2da Ley de Newton: Ley de la Fuerza o Principio Fundamental de la Mecánica
TERCERA LEY DE NEWTON
"Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto".
La tercera ley es completamente original de Newton (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo. Expone que por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad y dirección, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y opuestas en sentido.
Tal como comentamos en al principio de la Segunda ley de Newton las fuerzas son el resultado de la acción de unos cuerpos sobre otros.
La tercera ley, también conocida como Principio de acción y reacción nos dice esencialmente que si un cuerpo A ejerce una acción sobre otro cuerpo B, éste realiza sobre A otra acción igual y de sentido contrario.
Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita “c”.
Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, ésta permite enunciar los principios de conservación del momento lineal y del momento angular.
"Esta ley es algo que podemos comprobar a diario en numerosas ocasiones. Por ejemplo, cuando queremos dar un salto hacia arriba, empujamos el suelo para impulsarnos. La reacción del suelo es la que nos hace saltar hacia arriba".
"Cuando estamos en una piscina y empujamos a alguien, nosotros también nos movemos en sentido contrario. Esto se debe a la reacción que la otra persona hace sobre nosotros, aunque no haga el intento de empujarnos a nosotros".
El equilibrio traslacional de un cuerpo puede ser estático o dinámico un objeto presenta equilibrio estático si se encuentra en reposo un objeto presenta equilibrio dinámico si se encuentra en un movimiento uniforme Estático Traslacional Dinámico Equilibrio Rotacional.
Esta condición de equilibrio implica que una fuerza aislada aplicada sobre un cuerpo no puede producir por sí sola equilibrio y que, en un cuerpo en equilibrio, cada fuerza es igual y opuesta a la resultante de todas las demás. Así, dos fuerzas iguales y opuestas, actuando sobre la misma línea de acción, sí producen equilibrio.
El equilibrio puede ser de tres clases: estable, inestable e indiferente. Si un cuerpo está suspendido, el equilibrio será estable si el centro de gravedad está por debajo del punto de suspensión; inestable si está por encima, e indiferente si coinciden ambos puntos. Si un cuerpo está apoyado, el equilibrio será estable cuando la vertical que pasa por el centro de gravedad caiga dentro de su base de sustentación; inestable cuando pase por el límite de dicha base, e indiferente cuando la base de sustentación sea tal que la vertical del centro de gravedad pase siempre por ella.
El equilibrio rotacional es aquel equilibrio que ocurre cuando un cuerpo sufre un movimiento de rotación o giro, al igual que el equilibrio traslacional debe también equilibrarse; surge en el momento en que todas las torcas que actúan sobre el cuerpo sean nulas, o sea, la sumatoria de las mismas sea igual a cero. EMx= 0 EMy= 0 su fuerza se mide en torques o torcas es una magnitud (pseudo)vectorial, obtenida como producto vectorial del vector de posición del punto de aplicación de la fuerza con respecto al punto al cual se toma el momento por la fuerza.Explicado de una forma mas sencilla el torque es el producto entre la fuerza aplicada y la distancia a la cual se la aplica medida, generalmente, desde el punto que permanece fijo. Así como una fuerza provoca una traslación, un torque produce una rotación. El torque mide, de alguna manera, el estado de rotación que provoca la fuerza o la tendencia a producir una rotación.Del mismo modo que puede evitarse el desplazamiento de un objeto aplicando una fuerza contraria a la que lo hace mover, puede evitarse una rotación aplicando un torque contrario al que lo hace girar. Ejemplos de rotación y su fuerzas aplicadas.
CONDICIÓN DE EQUILIBRIO DE ROTACIÓN Si a un cuerpo que puede girar alrededor de un eje, se la aplican varias fuerzas y no producen variación en su movimiento de rotación, se dice que el cuerpo puede estar en reposo o tener movimiento uniforme de rotación. Para que exista este equilibrio se presentan los siguientes factores
a) Par de fuerzas: Se produce un par de fuerzas cuando dos fuerzas paralelas de la misma magnitud pero en sentido contrario actúan sobre un cuerpo, su resultante es igual a cero y su aplicación esta en el centro de la linea que une los puntos de inicio de las fuerzas componentes.
b) Momento de una fuerza: Llamado también momento de torsión o torque y se define como la capacidad que tiene una fuerza para hacer girar un cuerpo.
c)Centro de gravedad. El centro de gravedad (CG) es el punto de aplicación de la resultante de todas las fuerzas de gravedad que actúan sobre las distintas masas materiales de un cuerpo, de tal forma que el momento respecto a cualquier punto de esta resultante aplicada en el centro de gravedad es el mismo que el producido por los pesos de todas las masas materiales que constituyen dicho cuerpo.
d)Equilibrio estático: existe un equilibrio estático cuando todas las fuerzas que actúan sobre todos los componentes de un sistema están equilibradas. e)Vectores: un vector es una magnitud que tiene dos características: módulo, o magnitud, y dirección. Los vectores normalmente se dibujan como flechas. Una fuerza y el momento de una fuerza son magnitudes vectoriales
Aplicaciones de el equilibrio rotacional El equilibrio rotacional se puede aplicar en todo tipo de instrumentos en los cuales se requiera aplicar una o varias fuerzas o torques para llevar a cabo el equilibrio de un cuerpo. Entre los instrumentos más comunes están la palanca,la balanza romana, la polea, el engrane, etc.
La fuerza de fricción o la fuerza de rozamiento es la fuerza que existe entre dos superficies en contacto, que se opone al movimiento relativo entre ambas superficies (fuerza de fricción dinámica) o a la fuerza que se opone al inicio del deslizamiento (fuerza de fricción estática). Se genera debido a las imperfecciones, mayormente microscópicas, entre las superficies en contacto. Estas imperfecciones hacen que la fuerza perpendicular R entre ambas superficies no lo sea perfectamente, sino que forme un ángulo con la normal N(el ángulo de rozamiento). Por tanto, la fuerza resultante se compone de la fuerza normal N (perpendicular a las superficies en contacto) y de la fuerza de rozamiento F, paralela a las superficies en contacto.
Fricción estática: no se inicia el movimiento si la fuerza tangencial aplicada T hace que el ángulo sea menor a φ0 (no supera a Fr).
Fricción estática
Es la fuerza que se opone al inicio del deslizamiento . Sobre un cuerpo en reposo al que se aplica una fuerza horizontal F, intervienen cuatro fuerzas:
F: la fuerza aplicada.
Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al deslizamiento.
P: el peso del propio cuerpo
N: la fuerza normal.
Dado que el cuerpo está en reposo la fuerza aplicada y la fuerza de rozamiento son iguales, y el peso del cuerpo y la normal:
Se sabe que el peso del cuerpo P es el producto de su masa por la aceleración de la gravedad (g), y que la fuerza de rozamiento es el coeficiente estático por la normal:
esto es:
La fuerza horizontalFmáxima que se puede aplicar a un cuerpo en reposo es igual al coeficiente de rozamiento estático por su masa y por la aceleración de la gravedad.
Fricción dinámica
Dado un cuerpo en movimiento sobre una superficie horizontal, deben considerarse las siguientes fuerzas:
Fa: la fuerza aplicada.
Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al deslizamiento.
P: el peso del propio cuerpo, igual a su masa por la aceleración de la gravedad.
N: la fuerza normal, que la superficie hace sobre el cuerpo sosteniéndolo.
Como equilibrio dinámico, se puede establecer que:
Sabiendo que:
prescindiendo de los signos para tener en cuenta solo las magnitudes, se puede reescribir la segunda ecuación de equilibrio dinámico como:
Es decir, la fuerza de empuje aplicada sobre el cuerpo es igual a la fuerza resultante menos la fuerza de rozamiento que el cuerpo opone a ser acelerado. De esa misma expresión se deduce que la aceleración que sufre el cuerpo, al aplicarle una fuerza Fa mayor que la fuerza de rozamiento Fr con la superficie sobre la que se apoya.
EJEMPLO PROBLEMA DE FUERZA DE FRICCIÓN
Sobre una caja de 1200 g de masa situado sobre en una mesa horizontal se aplica una fuerza de 15 N en la dirección del plano. Calcula la fuerza de rozamiento (fuerza de fricción) si:
a) La caja adquiere una aceleración igual a 2,5 m/s2. b) La caja se mueve con velocidad constante.
Datos
m = 1200 g = 1.2 Kg
F = 15 N
a = 2.5 m/s2 FR= ?
Resolución
Si aplicamos las ecuaciones de la segunda ley de Newton o principio fundamental de un cuerpo sobre un plano horizontal, obtenemos que:
F−FR=m⋅a⇒FR=F−m⋅a⇒FR=15N−1.2Kg⋅2.5m/s2⇒FR=12N
Cuestión b)
Si tiene velocidad constante quiere decir que en este caso la aceleración de la caja es a = 0 m/s2, por tanto: